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Chapter 1

WAVE PROPAGATION IN
ANISOTROPIC MEDIA DUE
TO INTERNAL HARMONIC
LINE LOADS

1.1 Introduction

Plane harmonic wave interaction with homogeneous elastic anisotropic media,

in general, and with layered anisotropic media, in particular, have been ex-

tensively investigated in the past decade or so. This ad;ancemeint has Letn

prompted, at least from a mechanics point of view, by the increased use of

advanced composite materials in many structural applications. Being both

anisotropic and dispersive, composite materials required indepth understand-

ing of their mechanical behavior. The list of relevant literature is rather long

and we thus refer the reader to selective recent works for further representative

references [1-6]. Some of the difficulties inherent in the treatment of wave prop-

agation in anisotropic media can be illustrated by considering slowness wave

surface methods for infinite media [1,7-9] (Synge. 1957; Fedorov, 1968: Mus-
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grave, 1970). According to this analysis, the slowness surface of an isotropic

material consists of two concentric spherical sheets, an inner one representing

the longitu(inal wave mode and an outer one representing the two degelnerate

transverse modes. In the anisotropic case. we find there are three general wave

surfaces, one for the so-called quasi-longitudinal wave and two nondelgenerate

sheets for the quasi-transverse waves. Moreover. the surfaces will no longer

be spherical in shape but will reflect the elastic svmrnetrv or assymetry of the

material. Perhaps the most severe consequence of elastic anisotropy in infinite

media is the loss of pure wave modes for general propagation directions. This

fact also implies that the direction of energy flow i.e., group velocity) does

not generally coincide with the wave vector, or wavefront normal. Clearly,

uncoupled pure potentials (such as are found in the isotropic case) are much

simpler to treat than the mixed modes characteristic of anisotropic materials.

For wave propagation in directions of symmetry some wave types revert to

pure modes, leading to a simpler characteristic equation of lower order. A

key condition which we found to facilitate our previous analysis is that at

any boundary all wave vectoi's must lie in the same plane. This requirement

implies that the response of the media will be independent of the in-plane

coordinate normal to the propagation direction. We therefore conducted all of

our analysis in a coordinate system formed by the line load direction and its

normals rather than one determined by material symmetry axes. This choice

lead to a significant simplification in our algebraic analysis and comp utations.

Compared to the extensive literature on the interaction of plane harmonic

waves with anisotropic media, very little work is available on the response of

such media to concentrated source loading. Here concentrated sources include

point as well as line loads. Harmonically pulsating and transient sources are

common types of such loading. Understanding the response of elastic solids to
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internal mechanical sources has long been of in(erest to researchers ill classi-

CC, fields such as acoustics, seismology, as well a.; modern fields of application

like ultrasonics and acoustic emission. It is known that whenever a material

undergoes a local failure, elastic waves are general ed due to the rapid release

of localized strain energy. Such radiation. for cxmiple, is known as acoustic

emission in the field of nondestructive testing of materials. In seismology it is

of course known by the earthquake.

A quick review of available literature on this subject reveals that most of

the work done so far is carried out on isotropic media. The effect of imposed

line load in homogeneous isotropic media has been discussed by several in-

vestigators ever since Lord Rayleigh discovered the existence of surface waves

on the surfaces of solids [10]. An account of the literature dealing with this

problem through 1957 can be found in Ewing, .Jardetsky and Press [18]. Most

of the earlier work [13-15] followed Lamb [11,121, who apparently was the first

to consider the motion of semi-infinite space caused by a vertically applied

line load on the free surface or within the medium. He was able to show that

displacements at large distance consists of a series of events which corresponds

to the arrival of P-, S-, and Rayleigh surface wave. The analytical approach

used in the above mentioned investigations and others [13-15] can be summa-

rized as follows ; the steady state problem for harmonic waves propagating

in infinite isotropic media is solved at first and then generalized to the case

of half-space using superposition technique. For transient source loading re-

sults can be obtained from those corresponding to harmonic ones by a Fourier

integral approach.

In this paper, we closely follow the formal developments in our previous

works [1-6] and study the response of several anisotropic systems to harmoni-

cally pulsating buried line loads. These include infinite, semi-spaces and plate



systems. Our analysis will be carried out on anisotropic uedia possessig

monoclinic or higher symmetry. The load will be in the form of a normal

stress load acting at an arbitrary direction within the materials in the plane

of symmetry. We use a building block approach in which we start by driving

results for an infinite media. Subsequently we obtain the results for half-spaces

by using superposition of the infinite medium solution together a scattered so-

lution from the boundary. The sum of both solutions has to sa4isfv stress free

boundary conditions thereby leading to complete solution. Lastly we proceed

to develop solutions for a plate by insuring both the infinite media solution and

the scattering solution to satisfy the two free surface of the plate. Our work

will be easily executed by using the linear transformation approach in which

we identify the line load with the x2 direction. This implies that all involved

field variables will be independent of the X2 direction. Nevertheless. and in

general we will have three nonvanishing particle displacements. Material sys-

tems of higher symmetry, such as orthotropic, transversely isotropic. cubic.

and isotropic are contained implicitly in our analysis. The equivalent crystal

systems of monoclinic, orthohombic, hexagonal and cubic may be substituted

for the elastic material systems analyzed here. We demonstrate numerical re-

sults results drawn from concrete examples of materials belonging to several

of these symmetry groups. For orthotropic and higher symmetry materials

where the remaining two principal axes lie in the plane of the plate, the parti-

cle motions in the saggital and the normal to it uncouple if propagation occurs

along either of these in-plane axes.

1.2 Theoretical development

Consider an infinite anisotropic elastic medium possessing monoclinic symme-

try. The medium is oriented with respect to the reference cartesian coordinate



system xi = (x rx. x') such that the x, is assumed normal to its plane of

symmetry as shown in figure 1. The plane of symmetry defining the mono-
clinic symmetry is thus coincident with the x' -x plane. With respect to this

primed coordinate system, the equations of motion in the medium are given

by [1]

and, from the general constitutive relations for anisotropic media.

'.. ' ij,Jk,l l ,2,:3 (1.2)0.ij Cijklekl, , 12

by the specialized expanded matrix form to monoclinic media

c' ' '2 C'3  0 0 c'6  e'1
0"2 2  C12 C22 2C23  0 0 C2 6  e 2 2

3 c33 c23 c33  0 0 C'1 e.
2 0 0 0 C'44 C45  0 3'7 0 0 0 5 ' 0 3'•

"13 C4 5  C5 5

a" 12  C1 6 C2 6 C3 6  0 0 C/66 km 12

where we used the standard contracted subscript notations 1 - 11, 2 --+ 22,

3 - 33, 4 - 23, 5 -+ 13, and 6 - 12, to replace cIjk (i,j,k,l = 1.2,3) with

Cpq(p, q = 1, 2,..., 6). Thus, c45 stands for c23 13 , for example. Here 0.,, e'. and

u1 are the components of stress, strain and displacement, respectively, and

p' is the material density. In Eq. (3), 7'j = 2ei, (with i j ) defines the

engineering shear strain components.

In what follows, we study the response of the infinite medium to a uniform

harmonic line load applied along a direction that makes an arbitrary azimuthal

angle q with the x' axis. That is, the direction 0 = 0 coincides with the

reference coordinate x'. Since, as was pointed out in the introduction, the

response of the medium to such a wave is independent of the applied line

direction, we conduct our analysis in a transformed coordinate system xi =
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(xl,.r 2, X3 ) formed by a rotation of the plane xI - x'2 through the angle.o

about the x' direction. Thus, the direction x2 will coincide with the line load

direction.

Since C,?kl is a fourth order tensor, then for any orthogonal transformation

of the primed to the non-primed coordinates, i.e., it transforms according to

cikk =--: 3 •,,3jJko! 3lpCnop (1.4)

where Oij is the cosine of the angle between x' and x, , respectively. For a

rotation of angle o in the xi - x' plane, the transformation tensor j3-- reduces

to

cos 6 sinel 0
31.•= -sin0 cos0 0 (1.5)

0 0 1

If the transformation (5) is applied to Eq.(3), one gets

0,il Cll C12 C1 3  0 0 C1 6  ell

t"22 C1 2 C2 2  C2 3  0 0 C26  e 2 2

033 - C1 3  C2 3  C33  0 0 C3 6  C3 3  (1.6)
(723 0 0 0 C4 4  C4 5  0 (.23

0"13 0 0 0 c45  c55  0 Y13
0"12 C1 6  C2 6  C3 6  0 0 C66 712

where thb, relations between the cpq and c'q entries are listed in [5]. Notice

that, no matter what rotational angle i0 is used, the zero entries in Eq.(3) will

remain zero in Eq.(6). In terms of the rotated coordinate system xk, we also

write the momentum equations as

-- + P (1.7)

As mentioned earlier, in the rotated system, the elastic wave equations, for

wave propagating in the XI - X3 plane, are independent of X2 . Nevertheless,

the particle motion can generally have three nonzero components Ul, u2, and



113 . We identify the u2 displacement as belonpjig to tAh, horizontally polarized

(SH) wave. Here, the equations describing these three wave motions are coiu-

pled, complicating the analysis of free waves in the medium. In terms of the

displacement components the equations are written in the expanded form

02 02 02 02 .CI I --- + C55 -1]u1 + [Cs-, +C

0 ) 02ul+, c 5 )2u 02 + C4 5(Z12
0x

+ -- RC13-- + C55)•, 1,13... p - -f, (Sa)
02 02' 2
X2+ C45 -2U + r"- + C44

0 ) 02?L2
+ [(C3 + C••= -f2 (SPf

0 0 0 0)
-[C 1 3 + C5 5 )-a}ut + 0-[(C36 + C45 ) 072112

09X3 ax, 073O.F02 02 0 2U3
+ c 3 355u =) P ~ - f3 (SC)1 21

with

A = QA(xi)6(X3)F(t) (1.9)

1.3 Source characterization

Using the above geometric arrangement we proceed to describe the line load

by a direc delta body force function located at the arbitrary location (73 =

). This choice of source location is arbitrary and is not necessary for the cases

of propagation in either the infinite nor the semi-infinite media. However, as

will be shown, this choice will lead to great simplification in the algebraic ma-

nipulation for the propagation in the plate. Solutions to the present problem

can be accomplished by following the procedure used by Achenbach [20]. Ac-

cording to this procedure, the infinite space can be thought of as consisting

8



of two semi-spaces whose artificial interlace contains the applied load. TTlis

the upper ha'g-space occupies the region xj > x" whereas the lower half-space

occupies the region 13 :< x'. As a result of this. appropriate condition 1I.ist

be specified at the artificial interface.

In order to be able to specify these int rface conditions we consider a very

thin "'interface" laver extending from r3 = X3- o to X.3 = X . \Ve hen
start by requiring continuity on the displacement components nmd their time

derivatives, namely

U, -0 = 0 (1 Ola)
0()U,(xl, ,C3. t) P+

O__(___ _ o = 0. i 1= 1.2.3 w 1)

Integrating Eqs.(8a,b.c) across the interface layer and using the continlitv

equations(IOa,,b), leads to the discontinuity in the displacement sptial deriva-

tives rpsulting in the following jump conditions.

53 j,-, -3QI(x 1 )F(t) lii)
OX3 a3 23P -

'I+ C44 a -'- + -Q 2-(xi)F(t) llb)

Now, let's consider the special case where Qt = Q2= 0 and Q3 Q. For this
sit, uation equations (11 ) reduce to

C4 + 54 g- 3+o 0 (12a)

Ouj Ou~a •~+o
(s--+ 4--- _o--0 (12b)

,X3 0•X3 +
(713 xo= 0 a o = -Q36(rnI)F(t) (12c)

(.3.173 .,

liwle'scosie te ,pcil ae hee , 2 ndQ3 Q.Fo ti



Examination of the relations (12a,b) reveals that. if (c,14 ci-5 (715) does not

vanish ( which is the case ), then u, and ?t, minst be at least constant andt.

in accordance with (10), equal. We choose this constant as zero and hlis

conclude that ui and t, vanish at the interface. F1tiallv. we satisfy the nukrnial

stress discontinuity condition (13c) by assigning

O ro• OU 3
C33aOx----O3J,,+o = -QO(x,)F(t)/2. c = Qx,)F(t)/2 (1.13)

Colleccing the above conditions we finally summarize the condition at the

artificial interface as
it1 = 0]

ua = 0 for Xr3  ? xP at X3 = XP (1.14)
a113 1 J 3

C33 - = -2 Qb(x 1)F(t)

u, =0 }

u 2 = 0 for x 3 < .aat x 3 = x (1.1I5)
0u3  1 I

=30x - -Q65(x,) F( t)
OX3 2

1.4 Formal solution

Following the procedure of [11, we outline the steps leading to a formal solutions

of Eqs.(8a.b,.c) for each of the two semi-spaces. Since the body force has been

replaced by a "boundary" condition, we drop f, from Eqs(Sa.b,c). We then

assume harmonic solutions followed by applying the Fourier transform to these

equations in accordance with

Ui = e' (16a)

?tq= J ie-Jqdx 1  (16b)

10



The general solution of the resulting differential equations is then sought iII

the form

i = 1,2. :3 1.T7)

leading to the characteristic equation

• \,, .k12 A13 v-1 0I~S
-A2 -*V2 2 1\2 11"2

:A13 A 2 3 2k-33 i "3

where the various entries A' are given in Appendix A. Note from (18) that

the A\ij matrix is symmetric.

For the existence of nontrivial solutions in U1 the determinant in Eq. (IS).

must vanish giving an algebraic equation relating a to ,;. This is obviously an

alternative presentation of Christoffel equation[I]. The diff,,rence is that we

are now solving for a in terms of ; as compared ••ith solving for the phase

velocity for a given propagation direction. Setting the determinant equal to

zero, one obtains a sixth order equation in a (cubic in c2) which is written

symbolically as

A l a' 4;- A2 o04 + A 3 a 2 + A 4 = 0 (1.19)

with its coefficients are given in Appendix B. Eq.(19) admits six solutions for

a. These a's have the further properties that

2 = -al, a 4 =-a3, a6 = -a 5  (1.20)

Furthermore for each a, equation( 8) yields tCe displacement amplitude ratios

17 = tL2 q/l('iq, W7 = U3qlUli

,= lA 2,3 - AI2A113

"q A1. 2A2 a- A22A13  
a)

S A\1 2A23 - A13 A 22  (211))
",23A 23 - A.2,2 A31

11



Finally, using sup-rposition, we write the formal solutions for the ,tiiplace-

ments of equations •a.b,c) and their associated stress components using l-q. i6

as
6

I, L2 , a 3 = .(1. UIq 1. 221
q=l

6

(&33, <3i, &23) = F(Dil, D 2 . D1 23,
q=l

where

Dlq j=(c 1 3 + c36 V7) - c3 3acwq (1.21)

D2q = Ci5Ojw - %) - C45qVq (1.25)

D3q = c4s(jw -a,) - C44OUVq, q I,2,..,6 (26)

With reference to equation the relation (2j) and to the A0 entries of Appendix

A and by inspection of equations (20) and (24-26). one recognizes the relations

(see Ref.[2])

V2  = V1I V4  -V3, 6 = V5

1U2 = -W 1 • Wi)4  = -- tW3, W 6  =- W5

D 12 = Dii, D14 = D13, D 16 = D15  (1.27)
D2 = -D 21, D2 4 =-D 23 , D 26 = -D 2 ýs
D2 = -D 3 1 , D3 4  -D 33 , D 3 6 =-Das

The above solutions with their various properties can now be specialized to

both artificial half-spaces by the following steps. Inspection of the above so-

lutions indicate that each consists of three pairs of wave components, each

pair propagating in mirror image fashion with respect to the interface., namely

along positive and negative X3-directions. Since propagation is expected to

emanate from the interface into both media, we arbitrary reserve ql,q.3, and

12



q. for the lower half-space; the rema ining one(, .IIA1 IlY ,described wit I .q1

ald qj for the upper on-Q. \e list the formal suti ion in the lower and h1lwer

half-spaces according to

(Iu I 2 C, ) 2 - C13 ?V' ,. " -i

(• "013, & 23 ) - Z (D I.V D ,.,I, u(? - -x!i z

q=2.4.6 < X1

( b '&13, , 23) = j (DIq, D2,7,D 3,)L . .- ri' ) - "
q:2,4,6

1.5 Solutions in infinite media

At this point, we have presented a formal solution of the field equation in a

monoclinic medium. The amplitudes U1, are the unknowns. The ampliind.es

Ulb will now be determined by implementing the artificial interface conditions

(14-15). To this end, if (28) is subjected to the conditions (14) and (29) to

(15), one finally solves the displacement amplitudes as

( 11 = - Ul = (v5 - v3)Q/(2caaD.j) (30a)

U13 = -U 1 4 = (vi - v,5 )Q/(2cO3D.m) (30b)

UIS = -U 16 = (v3 - Vt)Q/(2c%3D•,) (30c)

where

D urn = V I(aa0 3 - 5w 5 ) + V3(asws - 0 1wl) + V5 (o'a wl - ow 3 )( I 1.31)

It is interesting to note that Dm = 0 defines an equivalent Christoffel charac-

teristic equation for the propagation of bulk waves in the med(ium [-]. With

13



these solutions for the wave amlplitudes, solutions in the upper region can le

written in terms of q = 1,3, 5 as

(tf2,&a) = Z (-1,-v',,,w,)'q-'l -'
q= 1,3.5

(&a33, &i3,623 ) =Z E (-DIq, D2., Dq (1.32
q= 1,3,5

In summary, solutions (28) and (32) with the amplit ude solutions (30) uniquely

define the propagation fields in the lower and upper "'artificial" semi-spaces.

In other words, their combination constitute the total solutions for the infinite

medium.

1.6 Solution in half-spaces

We now adapt the solutions of the infinite media (28) and (32) to solve for

the case where the free boundary is intercepts the propagating pulse at some

arbitrary location parallel to the plane X3 = 0. We assume that the free

boundary is located at x 3 = -d as depicted in figure 2. This implies that

the free boundary is located in the upper region and thus can only interfere

with the propagation fields in the negative x 3 direction. For this case, the

solution (32) will constitute an incident wave on free surface. As a results

waves will reflect from the free boundary and propagate in the positive x 3

direction. Thus, appropriate formal solutions for the reflected waves can be

adapted from the solution (28) in accordance with (Note now that .rx does not

appear because solutions are referred to the origin .r3 = 0)

:, (1. V ,7 ) qr - (l1.33)
q=1,3,5

"3313&23 " D=9 tle" (1.34)
q=i,3.5

14



With this the total solution for the senii-space (designated with sutperscript

"s') which is required to satisfy the stress free boundary condition is obtained

by superposing the incident waves and reflected waves in accordance with

=1 2 .35

q =1.3,5

+ • (D32. D"q, Dq)LDqc

q= 1,3,5

The boundary condition is given by

" 13  2 3  =3 3  at X3 =-d (1.37)

By imposing the boundary conditions (37) on Eq.(6). linear system is obtainedt

by

(Dii D13  D15  [,,!,, E,' (R 1 '
D21 D 23  D2s U13 E3 [ = B3  (1.38)
D31 D33  D35  U 5 Es/ ] R s

where

R, = -(U(1 )D,1 IE' + U(j)D13 E 1 + U(')D1 5 E) (39a)
R 3 = (U(')D21 E' + U3-D23 E3 + s 1D 25 E (39b)

R5 = (U,()D 3, Er + U(-D3 3E- + ('T)D, •,) (39c)

Using the standard Cramer's rule we solve the reflected amplitudes as

1
Ur - DE(RIGII - R3 G2 1 + RsGl1 ) (40a)

-1
= D-m1 3 (RIG13 - RI3G23 + Rt.G 33 ) (40b)

15



5  D3 .,E(RI G15 - R3 612'. + R5 G,5.r) (40c)

with

Eq =eckqd, Er = e-Oq(P+d), q=1,3,5 t.1)

and

Dsm = DiiGij - D21G21 + D31G31  (1.42)

where Gqr are given in Appendix B. It is worth noting that Dm = 0 defines

the characteristic equations for the propagation of Rayleigh (surface) wave on

the free surface [1)

1.7 Solution for infinite plates

We now consider the response to the line load in an infinite plates having the

thickness 2d. Since the elastic waves in the plates are reflected at both free

boundaries xa = d and X£ = -d as shown in figure 3, the solutions are obvi-

ously more complicated than for the half space case, we however, the solution

procedures are the same. To this end, we adapt the solutions of the infinite

space (28,32) in order to solve for the case where the both free boundaries in-

tercept the propagating field. This implies that the free boundaries are in the

upper and lower semi-space and interfere with the propagation in the negative

and positive X3 directions. For this case, the both upgoing and downgoing

waves in the infinite space will constitute incident waves. As a result upgoing

waves will reflect from the free boundary x3 = -d and propagate in the posi-

tive X3 direction whereas downgoing waves will reflect from the free boundary

x3 = d and propagate in the negative X3 direction. Thus, total formal solu-

tions for the plate (designated with superscript 'p') can be adapted from the

16



solution for the infinite space and free waves (i.e. the six scattered ones) in

accordance with

for the upper artificial layer (-d _< x3 _ x3)

(a,, ý ,. = Z (-i -V,,, 3w)U} Y• '(&x-)
q=1.3,5

V7, wq)U, e"-<x 3

q=1

(&3p3, &P31&P = 23) (-Dq,D•,,. D3q)UL -- "(z-'-3)

q=1,3,56 1 A-4)

+:(Diq. D2qj D 3 q)L,'qe

q=1

for the lower artificial layer (x _< X3 :5 d)

, U '(0 e,- a '(X3 XZP)

q= 1.3,56 (1.45)

E lVq, Wq )Uflqealz3
q=1

(433, &13, &P3)= (Diq, D2q, D3qi)U(q)• e -C(3X-X)
q=1,3,56 (1.46)

+± (Di, D2., n -c,
q=1

The polarized amplitude, Ul'q, is again determined by applying the free traction

on the free surfaces given by

03 3=&1 3 =0, at1x2 = ±d (1.47)

Now, substituting the solution for the plate (??,??) into (??) with the aid of

(27) yields a linear system to be

Du1Ej D13E3  D 15E5  DBll P1  D13R3  DisEs 5  Ull R,
D21El D23 E3  D25ES -D 21El -D 23E 3 -D 25 E5R U[3  R 3

D 3 1 El D33E 3  D 3sE 5  -D 31 E1 -D 3 3 E 3 -D 35 EP5  Urs R5
DIIE 1  D13 E3  D15 85  D11El D13E3  D15 Es U5  R2 (1.48)

-D 21 EP - D23 E3 - D25 Es D21El D2E 3  D25 Es U 4 RK4
-D 3 1 El -D 33E•3 -D 35 Es D3 1 E1  D3•E 3  D35 E 5  UI'6 R6

17



where, besides the ,lefinitions of RI, R3, and R5 of (39).

R 2 = (U 1 lDI1 El + Ul3D 13 E3 + U15D 1 5 E) (49aEr~i +- -, U(i)n _Pr (i r

R 4 = (U(8) D 21 E1 + U3,D 23 , + UID 2o;) (49b)

R6  = (U(')D 3 1  + D3 3 E + U.5(D D.,'E) (49c)

with
-• =e-qd •r = -c,(dx-) qx) 1,3,5 (1.50)

After straight forward algebraic manipulation, the amplitude Ul'q is algebraically

simplified to

Qsinh(a 3d) sinh(c- d)R 22H12) 5-1R22H - Hsi H4 2 )

Ul', = - U1 2 Q DP. COth(a 5 d)D•15  12)(H52H4i

-(R33H4, - R44H42)(H 22 Hl - H12H2,)] (51a)
sinh(aid) sinh(asdrt

U13 = -UI4 = -QsD, 2inh as [(RII H2, - R22 H22)(H42 H51 - H4, H5 2 )
D.Q Dcoth(aQsd)D15

-( R33H 51 - R44H52)(Hl2 H21 - Hi1 H22 )] (51.)

U1,-,,= = Qsinh(ald)sinh(aad) [(RIIH 31 - f 22 H31 )(H42H6 , - H4 1 H6 2 )
DP. coth(ca3d)D•3

-(Rt33 H 1 - R 44H62)(H1 2H3 j - H11 H32 )] (51c)

with

DPM = -4 cosh(aid) cosh(a 3d) cosh(a 5d)x

[DG,,I coth(ald) - D3GI3 coth(a 3d) + D1 sG1 s coth(asd)] x

[DuGil tanh(ald) - D1 3G 1 3 tanh(a 3d) + DIsGI5 tanh(asd)] (1.52)

where, Rkj• and Hkj are given in Appendix B. Note that Dp, = 0 defines the

characteristic equations for the propagation of free wave in the plate.
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1.8 Numerical results and discussions

In this section we present numerical illustrations of the above analysis. We

choose for our illustration a graphite-epoxy composite material. The mi-

crostructure of this particular material has been extensively studied and mod-

els predicting its effective anisotropic properties are available elsewhere [1].

Based upon a 60% graphite fiber volume fraction these effective properties are

given with respect to the reference coordinate system x', as

15.-60 37 3.70 0 0 0
3.70 15.95 4.33 0 0 0

, 3.70 4.33 15.95 0 0 0 X 101o N/rM2

cj 0 0 0 5.81 0 0
0 0 0 0 7.46 0
0 0 0 0 0 7.46

with p = 1.6 g/cm3 . For a rotation of € = 45', for example, these properties

transform to

51.20 36.28 4.03 0 0 36.13
36.28 51.20 4.03 0 0 36.13
4.03 4.03 16.00 0 0 0.31 10 [

c~j= 0 0 0 6.64 0 0 x [N/m 2 ]
0 0 0 0 6.64 0

36.13 36.13 0.31 0 0 40.02

which confirms the earlier conclusion that the transformed matrix takes the

format of monoclinic symmetry. Having chosen the material we now sum-

marize a "flow chart" like procedure for our subsequent calculations. After

specifying the azimuthal angle 0 (namely, the line load direction) we proceed

in the first step to evaluate a's for given values of the wavenumber ý. We then

sort out the various a's in accordance with the required format of equation

(28-29). In the second step we evaluate the displacement ratios. By now, we
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are ready to calculate the inverse transforms in accordance with

1= + k i tjej4--dý, i = 1,2.3 (1.53)

Depending upon whether ui is symmetric or ant isyrnmetric, computational

effort would be greatly reduced. We first would 'ike to present solutions to

symmetry situations. If aq is symmetric with respect to ý. Then v7 will be
symmetric while wq, Diq, Dm, and Dpm will be ,ntisymmetric with respect

to ý. It then follows that fi and ýi2 are symmetric while 113 is antisynmnetric.

Accordingly equation (??) simplifies to

f~i = 1j00iisin(ýxi)d<, i= 1.2 (54a)7r 0f
' = - i1,acos(&xi)d< (54b)

The calculations of displacement and stress components are then formed straight-

forward, except at singularities. These singularities are poles corresponding

to the zeros of D,, and Dpm, namely, the characteristic equations for a sur-

face wave in the halfspace and free waves in the plate, respectively. We find

that the poles do not exist in the second and the fourth quadrant of figure 4.

namely for Re(ý) > 0 and Im(ý) < 0 and that D,,m of the infinite medium

has no poles. Thus, iii in the infinite space is integrated along the real i-axis.

Two different procedures have been used in dealing with these poles in the

integration process. The first requires the removal of these singularities from

the integrals. The second, based upon the work of Neerhoff et al [181. merely

deforms the contour of integration below the real i-axis, as shown in figure

4, so that no poles occur on the path of integration. In order to optimize

accuracy, judicious choices of the parameter, ýi, are required. The value of
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ýj, imaginary part of ýj, needs to be large enough to offset the contributions

of singular points, but not two large since it reduces the accuracy. In our

calculations, we choose the value ej = 0.1. For our numerical illustrations

we arbitrary choose the azimuthal angle o = 45" and the angular frequency.

w = :3.0 x 10' rad/sec.

Figures 5-7 depict the displacement and a normal stress components

il,i 2 ,u 3, o'33 in the media at the location x3 = -3 mm. The location of

the line load is chosen at the origin of the xi coordinate system for all three

geometries (infinite- and half-space, plate): thus ii, and a33 are symmetric

with respect to x3 axis while ii and ui2 are antisymmetric. Note from the fig-

ures that the amplitudes of the displacement and stress component are slowly

decreasing with oscillations for a long distances from the location of line load

in the infinite and semi-infinite space. However, the amplitudes in the plate

are oscillating along the location x3 = -3 mm with persisting amplitudes.

Figures 8-10 present the displacement mode (iii, i!3) at various locations.

We calculate deformation fields at the locations designated by broken various

radii (2.4mm, 5.55mm, and 7.2mm in infinite media; 2.4mm and 5.55mm in

infinite media; and 4.0mm in the plate) away from the source location. For

these investigations the line load is located at the origin of xi coordinate system

in the infinite and half-space media, and at (0,0,1) in the plate. Solid curves

represent deformations defined by x, + ii x 102, x3 + u3 X 102. Note that in the

infinite media, uil is zero on the x, axis and that u3 has maximum amplitude

on the x3. However, in the semi-infinite space and the plate the displacement

fields are much affected by the reflected waves. The displacement amplitude

in the semi-infinite space is seen to be greater than that in the infinite space.
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Figure 1.3: The infinite plate
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Figure 1.4: Complex integral contour
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Figure 1.6: Displacements ald stress in semi-infinite space of graphite-epoxy
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Figure 1.8: Displacement modes in the infinite space of graphite-epoxy. Bro-

ken circles are chosen as receiver location (xI, x 3) and solid curves are displace-

ments modes (xI + ±ii x 102, x3 + i 3 x 102) with respect to broken circles. The

line load is located at (0, 0, 1)
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Figure 1.9: Displacement modes in the half-space of graphite-epoxy. Broken
circles are chosen as receiver location (x],X3) and solid curves are displace-
ments modes (xt + il x 102,X3 + i 3 x 102) with respect to broken circles. Free
surface is x3 = -5.55 mm and the line load is located at the origin of the
system.
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Figure 1.10: Displacement modes in the plate of graphite-epoxy. Broken circle
is chosen as receiver location (xl,x 3 ) and solid curve is displacement mode
(xI + ul x 102 ,x 3 + i6 x 10') with respect to broken circle. Free surface is
X3 = ±5.55 mm and the line load is located at (0, 0, 1).
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Appendix A

Various coefficients of characteristic eq.(14) are given by

Al =C5502 - cCjO C +Pw 2

A12 = c45 a 2  cl2

A13 = -j~a(ct 3 + c55) (A.1)

A22 = c44 a2- c6 6 2 + pW2

A23 = -jOa(c 36 + C45)

A3 = c3o 2  cssg2 +pw2

2

At = c 3 3 c 4 5 - c13c 4 4c 5 5
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A2  = [Cl IC3 3C4 4 + C55F1 - c16C3C 45 - C45F2 + (C13 +12

[C55(c33 + C44) + C33c,44 - C45]PW

,43 = [(C13 + c55)F4 + C45C16C55 + C16F2 - -556

R(C13 + C55)2 + 2C45C]6 - Fl - C55(C-55 ± C66) - Cl I(C33 + C44 )JpwV2

(C33 + C44 + C55 )p
2w2  (A.2)

A 4  = (ClIC 55 C66 - C16C,5.5 k6 + [C11(c55 + C6,6 - C6

(clIt + 'C55 + C66) P 2 w T + p3W3

F1  = C3 3 c66 + C-44C5.5 - (C36 + C5)

F2  = C33 CI6 + C45C55 - (C36 + C45)(CI 3 + C55)

F3  = c4.5(C3 + C45) - C44(cI3 + C55 ) (A.:3)
F4  = C66(Cn3 ± C55) - C16(C36 + C45)

Appendix B:

Various coefficients of eq.(32-40) are given by

Gl 1  = D 23D35 - D33D 25

G21  = D13D35 -- 3D

G 31  = D13D25 - D 15D 23

G13  = D31D25 - D21D35

G23  = D31D15 - DlID 35  (B. 1)

G33  = DjsD 21 - DI~

G15  = D21 D33 - D31D23

G 25  = DIID 33 - D31D13

G3.5  = DI 2- D 13D21

Hil = DI,5D23 coth(ctsd) - D13 D.2s5coth(a 3d)
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H112 = D15sD33 coth(asd) - D1 3 D35 COth(a(3 d)

H21 = D15 D21 coth(cr 5 d) - D11 D25 coth(ald)

H2 2  = D 15 D3 1 coth(cr 5d) - Dl1D35 coth(ald)

H31  = D 13 D2 1 coth(av3d) - DlID23 coth(al~d)

H3 2  = D13 D3 1 coth(ca 3d) - D1 ID 33 coth(ced)

H4 1  = D15D23 coth(cv3d) - D13 D25 coth(asd) (B.21)

H42 = D1 ,5D33 coth(a 3 d) - D13 D35 coth(asd)

H51  = D15 D2 1 coth(cid) - D11 D25 coth(a 5 d)

H52 = D15D31 coth(old) - DlID 35coth(a5d)

H6 1 = D1 3 D2 1 coth(cy~d) - DlID23 coth(a3d)

H62  = D13 D3 1 coth(aid) - D1 1D33 coth(a 3d)

and

RI, = (R3 - R63)Dls coth(asd) - (R1 + R4 )D 3 5

R2= (R2 - R5)D1 ,5 coth(asd) - (RI + R4 )D 2 5

R33 = (RI - R4 )D35 coth(ct5d) - (R3 + R6)D15

R4= (RI - ft 4)D25 coth(a 5 d) - (R?2+ R,5)D,5

R 5 5 = (R3 -Rf 6 )Dl 3 coth(a 3d) - (R1 + R4)D3 3  (B-3)

R,% = (R2 - R 5)D13 coth(a3 d) - (RI + R4 )D 23

R7= (RI - R4)D33 coth(a 3d) - (R3 + R~6)D13

R8= (R1 - R4 )D23 coth(c03d) - (R2 + R5 )D13
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Chapter 2

WAVE PROPAGATION IN
ANISOTROPIC MEDIA DUE
TO TRANSIENT SOURCES

2.1 Introduction

Plane harmonic wave interaction with homogeneous elastic anisotropic media.

in general, and with layered anisotropic media. in particular, have been ex-

tensively investigated in the past decade or so. This advancement has been

prompted, at least from a mechanics point of view, by the increased use of

advanced composite materials in many structural applications. Being both

anisotropic and dispersive, composite materials required in depth understand-

ing of their mechanical behavior. The list of relevant literature is rather long

and we thus refer the reader to selective recent works for further references
[1-6].

The difficulties inherent in the treatment of wave propagation in anisotropic

media in general can be illustrated by considering slowness wave surface meth-

ods for infinite media [1,7-9]. In this analysis. the slowness surface of an

isotropic material consists of two concentric spherical sheets, an inner one rep-
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resenting the longitudinal wave mode and an outer one representing tlie two

degenerate transverse modes. In the anisotropic case, we find three general

wave surfaces, one for the so-called quasi-longitudinal wave and two nonde-

generate sheets for the quasi-transverse waves. Moreover, th? surfaces will no

longer be spherical in shape but will reflect the elastic symmetry or asymmetry

of the material.

Perhaps the most severe consequence of elastic anisotropy in infinite media

is the loss of pure wave modes for general propagation directions. This fact

also implies that the direction of energy flow (i.e., group velocity) does not

generally coincide with the wave vector, or wavefront normal. Thus, uncoupled

pure potentials (such as are found in the isotropic case) are much easier to

treat than the mixed modes characteristic of anisotropic materials. For wave

propagation in directions of symmetry some wave types revert to pure modes,

leading to a simpler characteristic equation of lower order.

A key condition which was found to facilitate the previous analysis is that

at any boundary all wave vectors must lie in the same plane. This requirement

implies that the response of the media will be independent of the in-plane

coordinate normal to the propagation direction. Accordingly the analysis was

conducted in a coordinate system formed by the line load direction and its

normals rather than one determined by material symmetry axes. This choice

leads to a significant simplification in algebraic analysis and computations.

In comparision to the extensive literature on the interaction of plane

harmonic waves with anisotropic media, very little work is available on the

response of such media to concentrated source loading. Here concentrated

sources include point as well as line loads of which harmonically pulsating and

transient sources are common types of such loading. Understanding the re-

sponse of elastic solids to internal mechanical sources has long been of interest
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to researchers in classical fields such as acoustics, seismology, as well as modern

fields of application like ultrasonics and acoustic emission. It is known that

whenever a material undergoes a local failure, elastic waves are generated due

to the rapid release of localized strain energy. Such radiation, for example, is

known as acoustic emission in the field of nondestructive testing of materials.

In seismology it is of course known as earthquake.

A quick review of available literature on this subject reveals that most of

the work done so far is carried out on isotropic media. The effect of imposed

line load in homogeneous isotropic media has been discussed by several in-

vestigators ever since Lord Rayleigh discovered the existence of surface waves

on the surfaces of solids [10]. An account of the literature dealing with this

problem through 1957 can be found in Ewing, Jardetsky and Press 118]. Most

of the earlier work [13-15] followed Lamb [11,12], who apparently was the first

to consider the motion of semi-infinite space caused by a vertically applied

line load on the free surface or within the medium. It was shown that dis-

placements at large distance consists of a series of events which corresponds to

the arrival of longitudinal, shear, and Rayleigh surface wave. The analytical

approach used in the above mentioned investigations and others [13-15] can

be summarized as follows : The steady state problem for harmonically pul-

sating source in infinite isotropic media is solved at first and then generalized

to the case of half-space using superposition technique. For transient source

loading results can be obtained from those corresponding to harmonic ones by

a Fourier integral approach. The resulting double integral could be evaluated

only by considering large distances.

A modern alternative approach has been suggested by Cagniard [16]. He

showed that a suitable deformation of the integral contour not only resulted in

considerable analytical simplification but led to exact, closed form, alhebraic
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expressions for the displacements as functions of time. Subsequently. many

investigators have obtained the disturbances due to sources in the isotropic

media by applying Cargniard approach [17]. DeHoop simplified Cargniard's

method coisiderably and applied to cases involving impulsive line and point

sources in infinite homogeneous isotropic media [18-21]. lN-raut(1963) ap-

plied the Car'gniard-DeHoop method for investigating the transient distur-

bance caused by a surface line load in the anisotiopic half-space. Van der

Hijden(1987) investigated the features of the wave propagation in infinite

anisotropic media generated by a mechanical line source [28].

In this paper, we closely follow the formal developments in previous works

11-6] and study the response of two anisotropic systems to transient buried line

loads. This analysis include infinite and semi-infinite systems. The foregoing

illustration shall be carried out on ani -t.opic media possessing monoclinic

or higher symmetry. The load will be in the form of a normal stress load

acting at an arbitrary direction in the plane of syrmnetry of the material. One

then uses a building block approach in which one starts by driving results

for an infinite media. Subsequently one obtains the results for the half-space

employing superposition of the infinite medium solution together a scattered

solut;, 'rom the boundary. The sum of both solutions has to satisfy stress

free boundary conditions thereby yielding to complete solutions. Consequently

explicit solutions for the particle displacement,- in both systems are obtained

using Cargniard-DeHoop contour.

This work will accomplished by using the linear transformation approach

in which one identifies the line lead with the x2 direction. This implies that all

involved field variables will be independent of the .r2 direction. Nevertheless.

and in general, one has three nonvanishing particle displacements. Material

systems of higher symmetry, such a.3 orthotropic, transversely isotropic. cubic.
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Figure 2.1: A applied line toad in an anisotropic infinite media

and isotropic are contained implicitly in the analysis. Numerical results are

demonstrated, drawn from concrete examples of materials belonging to sev-

eral of these symmetry groups. It is found that for orthotropic and higher

symmetry materials where the remaining two principal axes lie in the plane of

symmetry, the particle motions in the sagittal and the normal to it uncouple

if propagation occurs along either of these in-plane axes.

2.2 Theoretical development

Consider an infinite anisotropic elastic medium possessing monoclinic symme-

try. The medium is oriented with respect to the reference cartesian coordinate

system x' = x such that the x, is assumed normal to its plane of

symmetry as shown in figure 1. The plane of symmetry defining tile mono-
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clinic symmetry is thus coincident with the .r, --. r. plane. With respect o t his

primed coordinate system, the equations uf motion in the medium are ven

Slat2
O .', + f f(-

and, from the general constitutive relations for anisotropic inedia.

l t I '

' g = i. .k,I = 1,9 3 (2'2)

by the specialized expanded matrix form to monoclinic media

(71 C/ ~ el 0 0

0"22 C112 C2 ,2 C23 0 0 C2 Q22
-- IC I

/73 - C13 C'23 C' 3  0 0 C.'i~ e33
%3 0 0 0 C' ' '

( C44 C45 0 23
013 0 0 0 C'4 5c'-5 0 71 313V V C4 5  •5 ,

0"12 C C166  2 36 0 0 C 12

where the standard contracted subscript notations 1 1 1, 2 22. : 33.

4 -+ 23, 5 - 13, and 6 - 12, to replace Cijk1(i,j. k, 1 1,2A3) with cpq(p.q =

1, 2,...6) are employed. Here Or i', and u' are the components of stress. strain

and displacement, respectively, and p' is the material density. In Eq.(1.3).

70 = 2ej) (with i # j ) define the engineering shear strain components.

In what follows, one considers the response of the infinite medium to a

uniform transient (time dependent) line load applied along a direction that

makes an arbitrary azimuthal angle o with the xi axis. That is, the direction

0 O= coincides with the reference coordinate 4'. Since, as was pointed out

in the introduction, the response of the medium to such a wave is independent

of the applied line direction. The analysis is conducted in a transformed

coordinate system xi = (XI, X-2, X3) formed by a rotation of the plane x' - x'

through the angle 6 about the xr' direction. For convenience the direction X2

is chosen to coincide with the line load direction.
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Since cjij is a fourth order tensor, then for any ort hogonal transforniatioi

of the primed to the non-primed coordinates it transfoiius iaccordinu to

Cijkl = 3inIjnl/3k.A3pC,,,,,.p(.4

where 3, is the cosine of the angle between x1, and X,. For a rotation of allgle

g in the x' - x.' plane, the transformation tensor .3,, reduces to
cos 6 sin f 01

= -sin cosb 00 (2.5)
0 0 1

If the transformation (1.5) is applied to Eq.( 1.3). one obtains

all C11  C12  c13  0 0 C16  Ell

a22 C 12 C'22 C,2 3  0 0 C2 6  C2,2

a33 C13  C2 3  C33  0 0 C3 6  C3 3 (2.6)

("23 0 0 0 C4 4 C4 5  0 1'23

(73 0 0 0 C45 C.55  0 "^13

0"1 2  C16 C26 C3 6  0 0 C6 6 / \ý12/

where the relations between the cpq and ePq entries are listed in [.5]. Notice

that, no matter what rotational angle 0 is used, the zero entries in (1.3)

will remain zero in Eq.(1.6). In terms of the rotated coordinate system xk.

momentum equations can be written in the form

Oz-"-- + f P = 2 P"Ui (2.7)
49% 0t2u

As mentioned earlier, in the rotated system, the elastic wave equations, for

wave propagating in the x, - x 3 plane, are independent of X2 . Nevertheless,

the particle motion can generally have three nonzero components ui, u2, and

u3. The u2 displacement can be identified as belonging to the horizontally

polarized (SH) wave. Here, the equations describing these three wave motions

are coupled in accordance with
(2 &2 & 032

S+ C-55 -111 1 + jC 2 + C45-1" 2
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+----t.c:3 + ,)> = p-i-t2 - fi (Sa)
S+ + --+13 4)x3

62 U + 44 1.2

d + a[(C3 63 ~ + C4,S)01 ll,

f+-=q,--,)(x--[x) (t) +c~~ZL3 =p -f (29)

2.3~ ~ ~ d, Sorechrcerzto

----(C13 + C-55)---]uIL + -[(c:ui + C5 l-
4)13 ax, d)i3  d2

= 2 f

fi is chosen to be of the form

fi= Q2 6(x1 )6(x3 - xA)F(t) (2.9)

2.3 Source characterization

Using the above geometric arrangement, one describes the dirc delta line load

as body force function located at the arbitrary location (X3 = x' ). This choice

of source location is arbitrary and is not necessary fcr the cases of propaga-

tion in either the infinite nor the semi-infinite media. However, as will be

demonstrated, this choice will lead to great simplification in the algebraic ma-

nipulation for the propagation in the plate. Solutions to the present problem

can be accomplished by following the procedure used by Achenbach [321. Ac-

cording to this procedure, the infinite space can be thought of as consisting

of two semi-spaces whose artificial interface contains the applied load. Thus

the upper half-space occupies the region X3 Ž x' whereas the lower half-space

occupies the region X3 _ xA. As a result of this, appropriate condition must

be specified at the artificial interface.

In order to be able to specify these interface conditions, consider a very

thin "interface" layer extending from X3 = x3- o to X3 = x3 + o • Then
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start by requiring continuity on the displacement components and their time

derivatives, namely
V~P+o

ui(x 1,x 3,_t)j, = 0 (1la)O"Ui(Xl, X3, 0t) P+X3

-, (10b)

Integrating Eqs.(8a.bc) across the interface layer and using the continuity

equations(10a,b), leads to the discontinuity in the displacement spatial deriva-

tives resulting in the following jump conditions.
SOul OU2 X,•.Q

S+C4 )1:,7_ = -QO b(xi)F(t) (1Ia)195X3 X 3

c4=- + C4Ox-- _ -Q 2 6(xI)F(t) (lIb)

c33xap 0o = -QOa(xI)F(t) (lIc)

Now, consider the special case where Q, = Q2 = 0 and Q3 = Q. For this

situation equations (11) reduce to.

(Css5- + 45-"IU o = 0 (12a)
SOul at: P+o

(C45- +4C44 P-0 0 (12b)
9U 3 xp +o g+

c33ý7 P = 033 I'-o = -Q5(xl)F(t) (12c)

Examination of the relations (12a,b) reveals that, if (c44C5 5 - C45 ) does not

vanish ( which is the case ), then ul and u2 must be at least constant and, in

accordance with (10), equal. This constant is then chosen to be zero and thus

conclude that ul and u2 vanish at the interface. Finally, satisfing the normal

stress discontinuity condition (13c) and assigning

C33 ._---P+o = -Qb(xi)F(t)/2, C33 -• o = Q6(x 1)F(t)/2 (2.13)
OX3 3 •X3 3
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Collecting the above conditions one can summarize the condition at the arti-

ficial interface as

=, 0

U2 0 2for x 3 >x r>3 at x 3 =x (2=1)
C33 -z =--QS(xi)F(t)

493

U1 -= 0
111 0
U-x 2 0} for X3 < x' at x 3 = x' (2.15109u3 1Q 3 3
C33 -Q6(x 1 )F(t)

O3 2

2.4 Integral transforms of formal solutions

Following the procedure of [1], let us outline the steps leading to a formal

solutions of Eqs.(8a.b,c) for each of the two semi-spaces. Since the body

force has been replaced by the "artificial interface" condition, one can drop f,

from Eqs(8a,b,c). Assume formal solutions followed by applying the Fourier

transform to these equations in accordance with

iii = uie-Ptdt (2.16)

U, = j iie-jP'7xkdxi (2.17)

The general solution of the resulting differential equations is then sought in

the form

i = Uie-°•, i = 1,2,3 (2.18)

leading to the characteristic equation

All A12  A1 3 U

A 12 A22 A23 =0 (2.19)
A13  A 23  A33) U3
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where the various entries Aij are given in Appendix A. Note from (1.19) that

the Aij matrix is symmetric.

For the existence of nontrivial solutions in j'/ the determinant in Eq.

(1.19), must vanish giving an algebraic equation of .. This is an alternative

presentation of Christoffel equation [2]. The difference is that one now solves

for a as compared with solving for the phase velocity for a given propagation

direction. Upon setting the determinant equal to zero, one obtains a sixth

order equation in a (cubic in a2) which is written symbolically as

Al a6 + A 2 a
4 + A 3a 2 + A4 = 0 (2.20)

with its coefficients are given in Appendix B. Eq.(1.20) admits six solutions

for a. These a's have the further properties that

a 2 = -a], a 4 = -a 3 , a 6 = -a. 5  (2.21)

Furthermore for each a, ej iation(18) yields the displacement amplitude ratios

V7 = U2ql/(Jq,Wq = U3q/bUlq

AIIA 23 - A 12 A13  (21a)
A12A23 -A22A3

Wq - A12 A 23 - A13 A22  (21b)
A2A3- A22 A33

Finally, invoking superposition, one can write the formal solutions for the

displacements of equations (8a,b,c) and their associated stress components

using Eq.(1.6) as
6

(fil, f12 , i13) = (1,vq, wq)Ulqe-Pa,(X3-Z) (2.22)
q=l

6

(&13, &13, &23) = p(Dlq, D2q, D3q)U qe -PLq(X3-X) (2.23)
q=l
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where

D1q C j1(c 3 + c36vq) - C330a Wq (2.21)

D2q = c5 5(jTiwZ - %q) - c4sakvq (2.25)

D3q =C45(jWq - aq) - c440 7 Vq, q = 1.2...,6 (2.26)

With reference to equation the relation (20) and to the A-\ entries of Appendix

A and by inspection of equations (20) and (24-26), one recognizes the relations

(see Ref.[2])

V2  ý Vi V V4  = V3 , V6  = V5

W 2  = -W 1 • W 4  = - W 3, W 6 = IV5

D12 = D11 , D14 = D13, D16 = D15  (2.27)
D22 = -D 21, D24 = -D-23 , D26 = -D 25

D32 = -D31, D34 = -D33, D36 = -D 3.

The above solutions with their various properties can now be specialized to

both artificial half-spaces by the following steps. Inspection of the above so-

lutions indicate that each consists of three pairs of wave components, each

pair propagating in mirror image fashion with respect to the interface, namely

along positive and negative x3-directions. Since propagation is expected to

emanate from the interface into both media, we arbitrary reserve ql,q 3. and

q5 for the lower half-space; the remaining one's, namely described with q2 , q4,

and q6 for the upper one. We list the formal solution in the lower and lower

half-spaces according to

(0lfti2 ,i)= i (1,Vq•,w)U L•e•°P'•-(3x•
q=1,3,5

(&3, &13,&23) = •_ p(Diq, D2q, D3q)Uiqe-P•(-) x3 _ (2.2S)
q=1,3,5

(fI¾,t fZ 3) = j(lVq, Wq)(J1qe&P':(r3x")
q=2.4,

6

q--2.4,6
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Specialization of formal solutions to infinite media

At this point, a formal solution of the field equation in a nionoclilic tlieddi'Itn

has been presented. TIlhe amplituhdes U',, are the unknowns. The, an ,plitudle',

U,,, will now be determined bv irnplernieting the artiticiat interface ctotitit IS

(1.1--1.15). To this end. if (28) is subjected t)o the conditions (I) and (29)' to

15). one finally solves the displacement amnplitudnes as

1 '12 (=c -' ,S )F(P)Q/(2c..3 D,,.. p) (3ta I

1il3 = --('1, = (e1 - v.• ) 1'p(t2)/(2C33I)D,,,,,) {:3u!,

Sis '1 = U 36 - p1I)F(P)Q/(2c: :D,...p) (30,-

where

Du, = V (o03 11 3 - OW r,) + U3(0•5' - (V w1l ) + i'-,( l IL' -- (•- '(2.31

It is interesting to note that D,,, = 0 defines anl equivalent ('hristotlel char-

acteristic equation for the propagation of b)ulk waves in the tnediumi, With

these solutions for the wave amplitudes. solitions in the upper region catin be

written in terms of q = 1.3,5 as

7= 1 '3,5 ( -3
(5".•3. "3,- &1 3)ý(-' = E p( -D~q. D-2q, D:3q):l q•"-'a x -:)( . )

q---1.3,5

In summary, solutions (28) and (32) with the aniplitutde soluitions (30) III iqitely

define the propagation fields in the lower and ripper "artificial" senii-spaces.

In other words, their combination constitute the total soluitions for the inifinite
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Free Surface

xl

x 3 = 3

X3 , X3

Figure 2.2: Senmi-infinite media

Specialization of formal solutions to half-spaces

One now adapts the solutions of the infinite media (2.28) and (2.32) for solution

of the case where the free boundary is intercepts the propagating waves at

some arbitrary location parallel to the plane X3 = 0. Assuming that the free

boundary is located at x3 = -d as depicted in figure 2. The implication is that

the free boundary is located in the upper region and thus can only interfere

with the propagation fields in the negative x 3 direction. For this case, the

solution (2.32) will constitute an incident wave on free surface. As a results

waves will reflect from the free boundary and propagate in the positive X3

direction. Thus, appropriate formal solutions for the reflected waves can be

adapted from the solution (2.28) in accordance with (Note now that x' does

not appear because solutions are referred to the origin x3 = 0)

(i, O,,,w. ) = U" (e, •3,Wq)uqqe-o° (2.3:)
q=1,3,5

3,3= 3 p(Diq,D2 q, D3qO)tqe-P (2.34)
q= 1,35
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With this the total solution for the semi-space (designated with sup)erscript

"s') which is required to satisfy the stress free boundary condition is obtained

by superposing the incident waves and reflected waves in accordance with

,,' ' [(i) ,-P= Z Hi-- 3

q= 1, 3 ,5

+ E (i,Vq, Wq)U IqeP `3(.3

q=1,3,5 (2.36+ E p(Djq, D2q, D3q)t. )Pqq(-C3)

q=1, 3
,5

The boundary condition is given by

&13 -= &"23 = &33' = 0. at x3 = -d (2.37)

By imposing the boundary conditions (2.37) on Eq.(6), linear system is ob-

tained by

D21  D23 D2s 1U1 aE3  = R3  (2.38)
D31  D3 3 D3 5 / Uf5 Es Rs

where

R, = -(U')Do E" + U(',D 13E3 + UD, 5 E,, (39a)

R3 = (U;I)D2 1,El + U (--D,, Er + U('4)D,, E`) (39b)

R5 = (U(')D 3, E' + U,' ,D33,E3 +± U('D 35 E') (39c)

Using Cramer's rule solve for the reflected amplitudes obtaining
1

U,- DIE(RIG,, - RaG 2 , + RsG 3 1 ) (40a)
-1

13 E•1(RIGI - J?3G23 + R5G,33 ) (0b)
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U = D5 ,,E.(RIG15 - R3CG25 + RsG35) (40,)

with

Eq = pcqd, Eý = e-PO4X +d), q=1.3. 5  (2.-41)

and

Dsm =Dll - D,21 G2 1 + D3 1G 31  (2.42)

Where the Gqr are given in Appendix B. Note that Dsm = 0 defines the

characteristic equations for the propagation of Rayleigh (surface) wave oil the

free surface [1]

2.5 Cargniard-DeHooop contour variation

Infinite media

Now consider the transformations back to the time-space domain using Carg-

niard DeHoop method. Choose F(t) as the delta function b(t) Laplace trans-

form of which is equal to 1. Then, consider the Laplace transform of ul. Fil is

obtained by

27i,= JC Uiie-P~c1x33j7?x1)dý + J li 3eP(013X3)nzIX)d7j+

12 Ui5e-P(`5-x3Jnx')dý (2.43)

Since, next one wishes to carry out the integration with respect to r7 along a cer-

tain contour in the complex il-plane that deviates from the positive imaginary

axis, extend the definition of the relevant integral into the complex ij-plane

by analytic continuation away from the imaginary il-axis. This deformation

of the integration contour is only valid if no singularities are crossed. One
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can prove (Burridge 1970) that the only singularity in the i;-plane are: (a)

branch points on the imaginary axis where up- and down-going waves meet:

(b) possible branch points off the imaginary axis where other two upgoing

or downgoing waves meet; (c) poles on the iniaginary axis to the lowermost

point, and to the uppermost branch point (The present of poles is linked to the

existence of interface waves at one or more of the interfaces that are present

in the configuration; the poles do not occur in the case of an infinite homoge-

neous solid). The singularities of type (b) are no obstruction to the contour

deformation process as long as summations of the contributions of the relevant

three generalized rays are taken into account by adding the results from the

three contour integrals. Thus. in the deformation process one only has to as-

sure that one does not cross any of the branch points on the imaginary r/-axis.

Now, change the contour of the q? integration from the positive imaginary axis

in the complex rl-plane to the Cargniard-DeHoop contour, parameterized by

the real time-variable t running from t q, the arrival time of a certain wave. to

infinity. This integral can be recognized as the Laplace transforms of certain

explicit functions of time, thus the inverse transforms by inspection as detailed

in Achenbach[32]. The integration in the complex it-plane is carried out along

the (in general, six different) paths where

t = ax 3 - jIMx1  (2.44)

with t real and positive. The paths that are traced by these different q} as t

increases are the Cargniard- DeHoop contour. The Cargniard-DeHoc p method

is based on the following elementary property of the one-sided Laplace trans-

form: for given Laplace transforms,

Ii t j 1 ,X 3 ,t)e-Pt dt (2.45)
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the inverse of the integral is exactly of the form of

Ui = ui(xj, x 3, t)H(t - tq) (2.46)

where H(t-tq) is the Heavyside step function. Equatio-n (2.44) is written with

respect to a by

a + -Im (2.47)
X3

Substitution of (2.46) into the characteristic equation (40) yields the sixth

order polynomial defining the Fourier parameter q7

Q (xI, xa, t,il) = 0 (2.48)

where

q(XlX 3 , t,r)) = B 6 /6 + B5775 + B4 714 + B3713 + B2T72 + Bq+ Bo(2.49)

The coefficient Bi is given in Appendix A. The distinct six roots of rq are

obtained from (2.47) with complex coefficients, which is the function of the

spatial variables (xI, x3 ) and time (t). The six root of i is composed of three

parabolas with respect to time t for a certain position (xl,x3), when they

are plotted as real y versus imaginary 77, and they are symmetric about the

imaginary 71 axis. In the interesting range of time, the q curves form three

branches. Each of the parabolas is associated with six distinct roots of a from

the characteristic equation (20), three of which correspond to the loer half-

space and others to the upper half-sipace, because of the boundedness of the

waves. Each of the three q represents a separate wavefront.

Now the inverse Laplace transform can be obtained by mere inspection of

(3.25)-(3.26) to be

4 r .c 3  (V5  - ()V -(v -v 3 ) ( H(t t)+--i-"'= [ T ,-
Q Dum at Dum (t -

5 2



( -u)(71+ 112 ('1 -~ 1f ]I t ")+

Dumn . 0t D," t
(V3 - Vl) ( )O7i3 (t,3 - 1!1 ) ( -

3•, )1( ((/- 1, - 13) (ýi a
D[ m D•, )( • - D 3, M,

where ti, t2, and t 3 are the arrival times of the various wavefronts. In other

words, they are the times that correspond to the values of the imaginary q-

axis intercepts of the three branches of q7. The notation rl• denotes the branch

of 7, to the right side of the imaginary r;-axis a•id l,- denotes the branhi of

rm to the left side of the imaginary il-axis. by using the same technique the

displacement u12 and U3 are obtained by

47,c:13  (V5 - v3 ) (q+ d)t (V5 - •3 ) 071( -)• ](t_Q D., a Dum~ v1 (iý )-a ir)--Ht -

a, -v) 2ý (VI 0 2,, 1•(1  - ~)v 3 (q2 atl~ _yý Tv1 - a H: - t2)+
Dum )r Dm a

[(-(3 -7_v3) ( q +d (V3 - ) , -(t ),- ]H(t t)

---- a = [VDum 3,, at D11",• )--:- (-:3(8)+
47c3 V.5 - V3 ) ,+ (v5 - 17).3 d'q -

[Dttm wl(ri+)a D7m 1 "1)- ]H(t - ti)+

((vl - V5) o7+_ (v, - v5 ) .. ,) ] H (t - V2)+

Dum w 3 (rj2 ) at Dm ata]Ht

W-5(71t) a t 3 - D s(q-)2-1'-iH(t - W3 3c
Dum Dudia

Half-space media

Employing the above procedure, integral transform solutions of Eq.(:35) in the

half-space are inversely transformed back to the space-time domain. However,

It is impossible to consider the transient waves in the whole half-space b%

using Cagniard- DeHoop method, since the order of the exponential is the

linear function of 01,0 3 , and a.%. Fortunately, one ca-in investigate the surface



waves onl the free surface. i~e., rj -(I. Thc~ rellectr'd wave" of E-q.) 33) fur the

case of 4~ = 0 and x.r3 -d that is desigiiated ats stilperscripf " are suniplified

2 C331) 7D 37yj Dsn = (C-5 - ?'3)(D 11G' - D21(;;&-~
QF 1 2 ':

( vi - v0( Iji:jG` - -2G D~i3 (;" )e,"x 3d+

(1'3 - 1 )(D5G - Un -', (2.5tP--P)"

2C33 D~jr~, Ds,, ýt' =n (i' : )(D11C1 + D,21C;- + D,3iG(,')cI"-;-

(vi r5)( D13Gi~ + D .,: + D3 :3G"'0)ePc'-I-4-

-z, v1)(Dj 5G(4 + D,ý,.5' + D:s~1kl(2.51)
2 C33Dunm Dsyr, r ( -v(D 1 cL D2 c;-D 3

3m ty:)(D 3 "-Dm '-D:1G

(VI - v5) (D 13 G'v - D2.3G"~ - 3G"

(V3 - v1 )( D15G"' - D,5u- D3,G`')f "'1 (2.52)

wi +h

3 3 3

= Gqr, Gv = Z Yqru7, G- ZGqrt, (2.5:3)
q1q=1 q=1

where Gq, is gaiven in Appendix C. Now the particle displacements are obtained

by superposing the incident waves on the free surface of Eqi'29) and reflected

waves on thiE aee surface of Eqs.(50-52). Now., the remaining task is to apply

Cagniard-Dehoop met hod the same as infinite media. The result for zu' are

given by

Q U

[V- 'r ) (1 + (D I IG" - D2 "- Dý31 G")!/D,,,)(71 +Ž

-(or v- V3 ) (1 + (Dli(,;L - 2G - D:3 iji")/Ds,,j(qi I - ti)±(
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[(13G- - D-,..G - D:aG )/ ,, I t+
D( n, 1

D(I V (I + (DD13G- - D.,3G. -- D3:3GC')/1D,,,)(I),t(t -
Dun, - 2 3 )

[U3 - V,)(1 + (D1,Gu - D...5 G` - D,3. Gu)/D ,,,)(q +)
(v3 - 3 ) dt

- D - (I + (D15 Gu - D 25G, - D3sGC)/D,,,)(,i7 )-',(t - 6 (2.5-1)

The remaining displacements uO and uj will be obtained by siniliar procedures.

2.6 Numerical illustrations and discussions

In this section numerical illustrations of the ab)ove analysis are given. Let's

choose for our illustration a cubic material. The microstructure of this partic-

ular material has been extensively studied and models predicting its effectiv,

anisotropic properties are available elsewhere [1]. The cubic material of InAs

is given with respect to the reference coordinate system x'r as

83.29 45.26 45.26 0 0 0
4.5.26 83.29 45.26 0 0 0

, 45.26 45.26 8:1.29 0 0 0 X101o [Nr,
0 0 0 39.59 0 0
0 0 0 0 39.59 0
0 0 0 0 0 :39.59

with p = 5.67 g/cm3 . For a rotation of o = 30', for example, these properties

transform to

51.20 36.28 4.03 0 0 36.13
:36.28 51.20 4.03 0 0 36.13

4.03 4.03 16.00 0 0 0.31 10 [
13 0 0 0 6.64 0 0

0 0 0 0 6.6-1 0
:36.1:3 36.10 0.31 0 0 40.0"2
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which confirms thle earlier conclusion• that the translfornt~d matrix t ake,, the

format of monoclinic symmetry. Iltaying chosen the material let's summarize

a "'flow chart" like procedure for Oulr SullSequen'tl calculations.

After specifying the azimuthal angle $ ( namely, the line loal , diret tion)

we proceed in the first step) to evaluate ifs from thme sixth order polv~oriual

(49) for given time and location (x , .r3 ), While time ( t) is marchinlg ftuil 0.

i's have three pairs of complex conjugates for t >_ t3 , two pairs of c;omplex

conjugates for t2 < t < t3, andl a lpair of comp~lex con~jugates for tI < t < t_,

tq represents the arrival times of thrce kinds of wave. As the i; doesu't have,

a p~air of conjugate, displacements and stresses are equal to zero. The arrival

times of three kinds of waves are collected with respect to arbitrary (lirection

of wave propagation in sl - Xa plane. The arrival times. the energy slo~vriess.

corresponding to arbitrary angle of •b for the cubic material are shown in ligure

5-8. However, the cubic material has cuspidals in the plane of arrival time

that represents lacunae, in which the elastic energy is zero. In the cuspidal,

the material has as many as five arrival times. The number of arrival times.

therefore, are dependent on materials. This agrees with [24J. The inverse of

the plane of arrival time is the plane of the elastic energy, which shows the

energy fronts of the wave propagation in the infinite media. Figure 5-8 shows

the variation of energy front corresponding to azimuthal angle. This energy

plane is exactly same as that calculated by the plane of slowness.

Next step is to solve the characteristic equation. One then has to decide

which of the ail correspond to qij, i = 1,3,5. If one (letermines the a,, from

&'s that match with a• of equation (27), the order of other two oj:. i $¢ j

does not affect to the numerical results. The sign of Re(ai 1 ) fo~llows sign of

Re(aa,), However, if the identification of the a's is in error. the final results

of the displacements will clearly indicate that something is amiss. [Lacking•
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the proper identification of the a's the calculated displacements will contaimi

imaginary parts, a violation _: the condition for the existence of the Laplace

transform. Therefore, only the proper identification of the a's will yield purely

real displacements so that the existence condition of the Laplace transform is

satisfied. Of course once the existence condition is satisfied then the validity

of the identification icheme was required since all of the explicit solutions for

cubic equations "mixed" roots for the various of the parameter . Then the

displacement ratios are calculated. Finally, displacements are determined by

explicit solution of (31).

Response of infinite media

Numerical results for cubic medurn of InAs with ( = 300 are shown in figure 3-

4. Figure 3a shows the slowness curves and the direction of wave propagation

100 and W°. Imaginary part of 71 variation with respect to time is shown in

figure 3b or 4a. Thus designating t1 ,t 2,t 3 ,t 4 , and ts as the arrival times of

various wave forms in order from figure figure 3b or 4a. The wave along the

paths of q corresponding to tj < t < t2 or t >_ t3 represent quasi-longitudinal

wave. The wave along a 77 of t >_ t4 represent quasi-vertical shear wave. The

wave along a 77 of t > ts represent quasi-horizontal shear wave. The time

interval of t2 < t < t3 represents 'lacunae' that all the disturbances are zero.

Figures 5-8 show numerical illstrations corresponding to the azimuthal

angle of the chosen several material systems : (a) variations of the energy

flows, (b) energy slowness curves, and (c) displacement fields. In fact, the

energy slowness curves show the arrival times for the various wave forms.

Both energy (a) and energy slowness (b) curves are based on the slowness

curves [7]. (c) present snap shots of absolute value of radical displacement

field at fixed time (t = 0.2 microsec). A spatial grid of 100xl00 points are
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generated for the first quadrant. The remaining quadrants is then generate("

by the mirror of the first quadrant . The vertical line load is located at the

origin. The origin is located at the center of the picture. Since the medium

is homogeneous. the wave field does not change as it propagates. The color

scheme runs from white (minimum) to black (maximum). In this picture we

can clearly recognize the wave curves (three wave fronts and lacunae). This

displacement intensity pictures agree with the energy flows (a).

The variations of the displacement fields corresponding to azimuthal angle

for the cubic material of InAs are shown through figure 5-8. Very sharp dis-

placement intensity and lacunae is presented in figure 5 in the cse of azinmuthal

angle 0 = 0. As the azimuthal angle is increased by 10', the third wave front.

quasihorizontal shear wave is more clear and the lacunae disappears. We can

not get the good numerical results arround 90' direction because of contour

sigularity of integral (47).

Response of half-space media

In this section, numerical results in half-space media are discussed. The first

case is to evaluate the response generated by an internal line load. One choos-

ing for our illustration a cubic material of the perturbed steel, the material

properties are given with respect to the reference coordinate system x' as

278.74 33.00 33.00 0 0 0
33.00 278.74 33.00 0 0 0

, 33.00 33.00 278.74 0 0 0 t0 [
c 1 = 0 0 0 81.91 0 0 x [N/w 2 ]

0 0 0 0 81.91 0
0 0 0 0 0 81.91

with p = 1.7 g/cmr. Figure 9 show a slowness curves (a) and displacements

versus time, ul (b) and u3 (c), for € = 30'. The receiver is located at (2.0.
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Figure 2.3: Various responses due to a line load in the infinite cubic medium of
InAs ( 300) : (a) Wave propagation direction (50) on the slowness surface
; (b) Imaginary part of r7 variation versus time (microsec) ; (c) Horizontal
displacement u versus time (microsec) along 0 = 5'
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Figure 2.4: Various responses due to a line load in the infinite cubic medium of
InAs (~300) :(a) Imaginary part of q~ variation versus time (microsec) ;(b)
Transverse displacement w versus time (microsec) along 0 50' (c) Vertical
displacement w versus time (microsec) along 9 ,5'
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Figure 2.,5: Displacement field due to a line load in the infinite cubic mediumi
of InAs (0 = 00) : (a) Slowness surface ;(b) Energy slowness ;(c) Energy flow

(d) Snap shot of displacement field at t=0.2 mnicrosec
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Figure 2.6: Displacement field due to a line load in the infinite cubic medium

of InAs ( 1 = 10°) (a) Slowness surface ; (b) Energy slowness ; (c) Energy
flow ; (d) Snap shot of displacement field at t=0.2 microsec
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0.0, 0.2)(mm). Sharp variations of displacements are due to the arrival of

the various waves. As time increases, the displacements approach to zero.

which is consequence of the direc delta function. The res-'" ' in figure 9 are as

expected physically. A strong peak is observed that shows the existence of a

surface or a Rayleigh wave. We can clearly recognize quasi-longitudinal wave.

2 quasi-shear waves, and a surface wave.

The second case is to numerically calculate the response generated by the

line load on the surface. The surface is free from tractions except the line

load along the x 2-axis. Many researchers (Taylor, Krout, etc) investigated

this problem for the various line load such as direc delta function or heavvside

step function with respect to time. Analytical results for the heavyside step

function surface line load in the half-space media are given in [29]. We present

numerical illustrations of the snap shot for the displacement fields generated by

direc delta line load. Figure 10 present snap shots of radical displacement field

at fixed time (t = 0.2) for isotropic steel (a), perturbed steel of € = 0' (b), and

perturbed steel of ¢ = 300 (c). A spatial grid of lOOx100 points are generated

for the first quadrant. The fourth quadrant is then generated by the mirror

of the first quadrant. The color scheme runs from white (maximum) to black

(minimum). In these pictures we can clearly recognize the wave curves (head

wave, surface wave, and three bulk wave forms). The surface wave attribution

is shown at inside of longitudinal wave front and near to the horizontal plane

surface.
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Figure 2.8: Displacements on the surface due to an internal line load in the
semi-infinite cubic medium of perturbed steel (f=I.5, qS 00), r/d = 5
(a) Slowness surface ; (b) Horizontal displacement u versus t/r; (b) Vertical
"displacement w versus t/r
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Figure 2.9: Displacements on the surface due to an internal line load in the

semi-infinite cubic medium of perturbed steel (f=1.5, 0 = 30'), r/d = 5 :
(a) Slowness s': rface ; (b) Horizontal displacement u versus t/r ; (b) Vertical

displacement w versus t/r
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(a)

(b)
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Figure 2.10: Snap shot of displacemnent field due to a surface line load of the
semi- ini It meium at t=0.2 miifnt ed'crose(: : (a) Displacement field for steel ;(b)

12Displacemenit field for perturbed steel (f=1 .5. 6 00) ;(c) Displacement field
for perturbed steel (f 0 '~ ~ 300)
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Appendix A

Various coefficients of characteristic eq.(18) are given by

All =c5so 2 -CIO 2 -p

A1 2  c 4 5 a 2 _ C-6q 2

A13 = -jija(c 1 3 + c55 )

A22 = c4 4 t2 -c62 -p

A23 =-j'7a(cM + C45)

A33  C C33 a 2 - C553 72 -p (2.55)
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A-2 = D,2q2 + D3 p

A 3 = D4 q
4 + D.5pr

2 + D6p2

A 4 = D7 q6 + Dspq 4 + Dgp 21;2 + p 3  (2,56)

Appendix B

Various coefficients of polynomial for Cargniard-DeHoop contour are given by

B 6 = D 2 x2x1 - D 4x4x2 - DIX6 + D7X6

B5 = Cijt

B 4 = Czt2 + D3 xzx• - D5 x + D8x+

B 3 = C 3jt 3 + C 4jt

B2 = C.5t
4 + C6 tl - D 6 XX2 + DqX6

B, = 6Djxlt5 + 4D3jx2xjt 3 + 2D 6x4x't

Bo = Dit6 + D3x4t 4 + D 6 4 + p3X6 (2.57)

C, = 6Dx + 2D4x4x, - 4D 2x'x3

C2 = 15Dx4- 6D 2 x'3 2 + D4x4

C3 = 4D,2x'xl - 20Dlx3

C4 = -4D3x x2 +2Dsx4xI

C5 = D 2x2- 15Dlx2

C6 = -6D3 3 1 + Dsx3 (2.58)

2

D, = c 3 3 c45 - c3 3 c 4 4 c 55

D2 = ccIC33c 44 + c55Fl - c 16c 3 3c 45 - c45 F 2 + (c 13 + c5.S)F 3

D3 = [C55(c33 + c 44) + C33C44 - C, - - ,
D4  [(cM3 + c55),l) + C45Cl6Ci5 + C16F2 - C55C6 - CuII]

= [(C 1 3 + c 5 ).2 + 2C45 C16 - F1 - C551C55 + C6 6 ) - CII(C33 + C44 )]p
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D6= -(c 33 + c44 +cCs5)p2

Ds= [lI(c11c + c66 - lP

D9 = (cll + c55 + c66)p2  (2.59)

F1  = c33 c6 + c44c55 - (c3 + c45)2

F2 = c33c16 + c45c.55 - (c-3 + c45)(cI 3 + c55)

F3  =C 4 5(C36 + C45) -c 44(Cn3 + C55)

F4 = c66(c13 + c55) - c16(c3 + c45) (2.60)

Appendix C

Various coefficients of polynomial for Cargniard-DeHoop contour are given by

G 1l = D 23 D 35 - D 3 3 D 25

G12 = D33 D1 s - D13 D 35

G13 = D13D25 -- D 15 D 2 3

G2 = D 31 D25 - D 21 D 35

G 22 = D1 ID 3.5 - D31D15

G23  = DisD21 - D11 D 25

G31  = D 21D33 - D31D23

G32  D31D13 - DID33

G33= DlID 23 - D 13 D21  (2.61)
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